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. ABSTRACT
) In this paper, the authors consider the problem of testing for the
o equality of the last few eigenvalues of the covariance matrix under
» correlated multivariate regression equations (CMRE) model,, Asymptotic
distributions of various test statistics are derived when the underlying
)
. distribution 1s multivariate normal. Some of the distribution theory is
"-, extended to the case when the underlying distribution is elliptically
symmetric, S
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1. INTRODUCTION

The classical multivariate regression model plays an important role in the
analysis of the data in various disciplines. This model is nothing but a set of
correlated univariate regression equations with the same design matrix. But,
situations arise often when it is quite unrealistic to assume the same design ma-
trix for each regression equation. For example, it is not realistic to assume,
in some situations, that the same independent variables are adequate for predic-
tion of each set of dependent variables. In these situations, we should con-
sider correlated multivariate regression equations (CMRE) with different design
matrices. Some work was done in the past (e.g., see Zellner (1962)) on the
estimation of location parameters under correlated univariate regression equations
model. Recently, Kariya, Fujikoshi and Krishnaiah (1984) considered the problem
of testing for the independence of two sets of variables whereas Sarkar and
Krishnaiah (1984) considered the problem of testing for sphericity under the CMRE
model. In this paper, we consider the problem of testing the hypothesis that the
last few eigenvalues of the covariance matrix are equal under the CMRE model.

In Section 2 of this paper, we given some preliminaries which are needed in
the sequel. It is complicated to derive the likelihood ratio test statistic under
the CMRE model. So, we considered a LRT-like test statistic. When the design
matrices in the CMRE model are the same, the above test statistic is equivalent
to the usual LRT statistic for testing the hypothesis of the equality of the last
few eigenvalues of the covariance matrix. In Section 3, we derived an expression
for the null distribution of the LRT-1like test statistic under the CMRE model
when the sample size tends to infinity. The expression obtained in Section 3 is
the same whether the density matrices are equal or not. In Section 4, we derive
the asymptotic distribution of the LRT-like test statistic under local alternatives.

Asymptotic nonnull distributions of a class of test statistics are derived in
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Section 5 under fixed alternatives. The above results are derived under the

assumption that the underlying distribution is multivariate normal. In Sections

6 and 7 we extend some of the above results to the case when the underlying distibu-

tion is elliptically symmetric. Finally, in Section 8§, we discuss applications

of the results of this paper in the area of principal component analysis.
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2. PRELIMINARIES

Consider two correlated multivariate regression equations given by

T °%%1%E
(2.1)
Y2 = X2622 +E2
where 911: r1Xp1 and 622: rzxp2 are unknown, whereas the design matrices Xl: nxrl

and X2: nxr2 are known and are of full rank. We will also assume that the rows

of (E1 EZ) are distributed independently as multivariate normal with mean vector 0

~

and covariance matrix I where

T = (2.2)

and zij is of order p£<pj. The model given by (2.1) is known as the correlated
multivariate regression equations (CMRE) model. Kariya, Fujikoshi and Krishnaiah

(1984) considered the problem of testing the hypothesis 21 =0 and derived

2
asymptotic distributions of test statistics associated with testing the above
hypotheses. Sarkar and Krishnaiah (1984) derived the asymptotic distributions

of test statistics associated with testing the hypothesis that Z=-021. In this
paper, we derive asymptotic distributions of some test statistics used for testing
the hypothesis HO: Ap-q+1-"'.xp where'A1 2eee> Ap are the eigenvalues of I.

An estimate of I is S/n where

Y'Q.Y 1'.Q.Y
G - 19Y 141 %Y, 2.3
1] 1]
0,4, %, 10,7,

and

: -1
. Q =I -X (X}X) "X}.

i1 i (2.4)
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.',,
v |
'f: Unless the design matrices are the same, S/v is not an unbiased estimate of I.

An unbiased estimate of I is I where I = (Zij),

yq = ViQ¥ /(aor), 1., =Y/QQ,¥,/t
o and t is rank of 'Qle. Although I is an unbiased estimate of I, it may not be
L
Y positive definite. So, we will use S/n to estimate I in the sequel.
- We will now describe a representation of S due to Kariya, Fujikoshi and
{f Krishnaiah (1984) since it is needed in the sequel. Consider the transformation
_;:: Mi
N x 7' -
. Wi ZiYi ” (2.5)
' i
E:: where Mi is of order (ro-ri)xpi and U1 is of order (n—ro)Xpi. Also, Zi: nx (n-ri)
':‘ ! = L
satigfies Z:LZi In—ri’ zizi Qi and is chosen in the following way. Let QO
f’ -
= I -X(X'X) ]j{' where X = [Xl.le and n,=n-r,. Then, we can express Qo as
.':"- = ' ' - e -
::' Qo ZOZO such that ZOZO Ino. Next, let Qj (J =1,2) denote the projection matrices
_-j onto L(X) nL(Qj) where L(A) denotes the column space of the matrix A. Then, we
O 0O =7 70 P17 - = (7

- can decompose Qj as Qj ijj such that ZJZJ Iro_rj. We then choose Zl (Zl,zo)
and Z, = (ZZ’ZO)’ In this case, zizi = Qi and ZiZi = Ini. Using this transfor-

mation, Kariya, Fujikoshi and Krishnaiah (1984) decomposed S as follows:

W'w W'z'z W

- s= | 11 1172721 o gp (2.6)
. to 1
.;.‘ W22221W1 szz

where
. U
- c= |1 W, Uy 2.7)
- u!
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p= |11 1720k - 212,. (2.8)
] ] ]
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In deriving various asymptotic distributions, we use perturbation technique
repeatedly. So, we review this technique briefly.

Consider a diagonal matrix A with the ordered latent roots A, >A,>...>1

1-"2 P

and assume that the perturbation of A can be expressed as a power series in ¢ as

follows:

M= A+eV(1) + eZV(Z) +0(e3), (2.9)
where V(j), j=1,2,... are symmetric matrices of order pxp and € is a small real
number and M is a pxp symmetric matrix whose eigenvalues are 211223_... _>_5Lp.

Assume Au is simple for a=1,2,...,p. Then the perturbation expansion of Q.a is

given by
pom e 2@ By () 3 2.10
« “ svaa £ vau _ anaB ] €7) (2.10)
gfa
where
(1) _ (@) IS
v (vaB ) and )‘aB ()\u )‘B) Ja¥B .

The above expansion is due to Lawley (1956).

Next consider the case when latent roots of A have multiplicities. Suppose
kq1+q2'“+qa-1+1=".aqu+”'+qa’ ea, that is, 60‘ has multiplicity q, for a=1,2,...,r,
q1+q2+...+qr=p and q, = 0. Then the mean eigenvalue of M corresponding to ea is

T{a = 9u+szc(11) +52Ec(!2) +0(e3), (2.11)

where




eaB

-1-trV

1)

aa

1 (2)
—=¢tr [V 4]0
% gha

= (ea- 68),

(1) 1)
Vii Y12

MCVRIMED

_rl r2

(1978) also derived it by using a different method.

eV

is of order q, XqB. This result is implicit in Kato (1976). Fujikoshi




3. ASYMPTOTIC NULL DISTRIBUTION OF THE LRT-LIKE TEST

The LRT-like test for Ho is given by

P
heromoagd § 92,
p-qtl © 9 p-gt1

where 2,119,2 2 eee > lp are the eigenvalues of So = ;l- S. We will consider the
o

SYRRK S YO

distribution of

T=-2 logA

P-q
- =n[qlog (trS - J £.)-qlogq-1log|S |
- °© 41 1t °

+ ] log 2.1 3.1)
i=1

For the asymptotic theory we assume, without loss of generality, that the covariance

matrix I is diagonal. Hence, under Ho’

L= diag(ll,kz,... ’)‘p-q

— "z, say. _ (3.2)

’ A,A,ooc,l)

As mentioned in the precediung section, S can be written as G+B where
G~Wp(2°,n°) under Ho’ and G and B are independently distributed. Define

V= /r;((G/no) - Zo) = (v,,), so that

ij

S v B
S =— =37 4+ ——+4 =, (3.3)
o n, o /E: %

We assume that the population roots )\l,kz,...,xp_q are simple. Then we have from (3.3)

v
- G R 2 1
PRV - + . LI kglxjkvjk} + 372 Q (3.4)
o *j o)

fOr j-1’2’.‘.’(p-q) Where
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Q-[EE?.Avvv-vE 2
3 ey gemy SIRARIRID A Vg
1$] ki) k#3
+ 2 Ex b, v, 1,
L sk

k#j

-1 ~
)‘jk = (Aj-lk) and xk A for k=p-q+l,...,p. Next, let T=a + T, where

a=n°/n. Then from (3.1) and (3.4) we get

T. 4T
T:T + 1 2 ’ (305)
o /_
nO
where
e g 2 1P8 P4 5 2
T = J (==2) ) A, vy += ] Xv%ji
k#3 1#1
P=q pRd
L7 Eazal BT
i=1 j=p-q+l i=p-q+l j=1
1 E 2 1 2 1 2
+ — Ve 4= ) Vii = ——35 ( v,
2% pgt1 22 41 p-gi1 I oy p-§+1 11
i#]
P=q
1 1 2 2
T=Z(—‘-—){§§)‘Avvv-v A Vit
T R T i Lo TN S M T k’z‘j jk' ik
i)  k#j
P=q Vv 2 P=q
- BT v -z a3 TV 3L v, )3
g=1 3y g IR 3 e T Ty 40 8T 23 p-gﬂ 3
+—=( v, ) A }
? p—§+l 33 jzl kgl 33k

k#j
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k#]

-4« v)(?b)+§ §1§J;il (3.6)

an’ pmg#l T pegrr 31T 42 ge1 4N

From (3.5), the characteristic function of T is

-1
o(t) =¢1(t) +¢2(t) +0(no ) (3.7)
where
itT
o it
¢1(c) =E[e {1 +— Tl}],
n
[o]
itT
it
¢,(t) =E[e ©° == _]. (3.8)
2 ‘/i 2

Note that the characteristic function of

[N

P rrvvr
e .‘x.‘. AR . , N
R R ST e

P
-2(n_/n) log[ T d, & § cli)“]“/2
prqtl = 9p-q+1
is ¢1(t) +0(n;1)’ where dl idzl"' idp are the eigenvalues of G/n(;. We know that

[see Fujikoshi, 1977] ¢1(t) = (1—21t)-f/2, where £ = (q(q+1)/2) - 1. Without

loss of generality, suppose q_{_p2 i.e. p-q <p1. Then under Ho’

E(bii) = (ro-rl) }\i, i=1(1)p-q
(ro-rl) A, i=p-qtl,...,p,

(ro-rz) A ’ i3p1+1’.o.’p

E(b,,) = 0, 1#7, (3.9)

ij

- . > ‘:. -_\ j
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ET =_z_j-i(r

Taking conditional expectation with respect to M

i's only we get

2,

Var(vii) = { )
22°

A A,
Var(vi ) -f i

3

1 )
-r.) == ( § v, J(x_-r.)(g-p,)
M2 j=1 Aj o 17 qaA p-qt+l ij o 1 2
P
p=q (r_=-r.)v 1 (r -~r))v
+(ro—r2)p2]+ Z o)\l ii+ ‘ o)‘l ii
i=1 i p-q+l
+ (r -r.) Ev /X
o 2 ii
+
P,
; bi
= C v C v 'Y
1 p1+l ii 2 pmq+l ii
where
(r-r)-z (xr,-r,)p
C. = 1 27 c_ = 1 2°%2
1 Aq > 2 Aq *
Let
*4 _ ( )
Y - vll""’vpp'VIZ’.."vlp’v23’...’v2p’."’vp-1,p -
Then

* *
E(v )=0, and Var(v ) = A,

where A is a diagonal matrix whose elements are given below:

i=1(1)p=-q
i=p=qtl,eece,Pe
1<i#3<p—q
1<i<p-q, p=q+l <j<p

1<jsr=q, pmq+tl <i<p

p-q+l <143 <p.

T r"'v‘

(3.10)

(3.11)
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), where v

The limiting distribution of V= (vij) is the distribution of V= (;ij

ij

(1 <3)'s are all independently distributed as normal with mean 0 and variances

*
given by (3.11). This implies that, in the limit, the elements of v are distribu-
ted independently as normal with zero means and variances given by (3.11). Now,

* %
let T =v @ Av , where A is a matrix whose elements depend on A,'s, A, p and q.
o . - i

Hence,
1 tev Ayt - L v* Lk * PL o, .
¢2(t)=—t-K1JetY Ay -ZY 2 ![Cl E vl—C2 Z vi]dv =0
‘a_ p.+1 p~q+1 ~
o 1
-p2/2 -1/2
where K, = (27) |a| . So, from (3.7) and (3.8),
-1
¢(t)=¢l(t)+0(no )
- (1-21t)" /2 +o@h), (3.12)

where £ = (q(q+l1)/2) - 1.
Inverting the right side of (3.12) yields the following expression for the

asymptotic distribution of A:
2 -1
Pr[-Zno logA/n<x] = Pr:(xf <x)+ O(no ) (3.13)

where f = [(q(q+1)/2) -1].

PSRRI R
"""" LY n'-_'
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7 - 0 uhere p©

where ¢1(t), ¢2(t), T,» T

v,.'s. Also note that

ij

-

Then

A

1
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4, ASYMPTOTIC NON-NULL DISTRIBUTION OF
THE LRT-LIKE TEST UNDER LOCAL ALTERNATIVES

tistic under the local alternative H, where

8

1-14'(61/\/7—1:) i'p-q+1,.-o,p

where D~ = diag(O,...,O,BP_q+1,...,6p). Hence

= ¥ +—v-—+lo
° %o

8(2) = 8(t) +4,(£) +0(a D),

, T2 are as defined in Section 3, with \

Vig = V44 1=1(1)p-q,
vij = vij’ i#3, 1i,j=1()p
vii = v11+°1’ i=p=q+ly.cee,pe
Now, define
-kt ~ -~ ~ -~ ~ ~ ~
. = (vll’o.- ’vpp,v12’...vlp’v23’...’vzp,.'.,vp-l,p)‘

3

In this section, we derive asymptotic distribution of the LRT-like test sta-

(4.1)

where %'s are not all equal. Now, define V as V = JE; ((G/no)-zo) so that

(4.2)

Note that (4.2) is of the same form as of (3.3), except for the change that V is

replaced by V. Hence, from Section 3, the characteristic function of T is

's replacedby
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.

E(V%) = u,, Var(v) = 4,

where

E; = (_0’...,0’ ep_q+1’¢co’ep, 0,...,0)

~%
and A was given in Section 3. As n°->°°, V is distributed as multivariate normal
- ~kt ~%
with mean vector Mg and covariance matrix A., Further, we have To =V AV and

- LS SR
(T,)) =C E V., =C, ) V..,
BTy = ¢ pmppp 1T 2 g 1

where C, = (rl—rz) (q-pz)/lq, c, = (rl-rz)pZ/Aq so that we get

it -1/2 1., v r,, . r-1
¢, (t) = —= |1 =21tsA| exp(= 5 {n! ] (21it) (a8) "4y}l
2 r—no 2% o) Y,
x e[ ] (210 a1, (4.3)

r=1

where ¢' = (Oel')_ - e! 08'2 ). Note that the characteristic function

C.c' C
q Zequz 1

p2. ~pP-~p
of ’
P
-2alog[ T di(l" E di)q]n/Z
p-q+1 * 9p—q+1

is ¢l(t) +0(n;1), where a = nO/n, and d. > ... 1dp are' the eigenvalues of G/no,

1

where under H G~Wp (no, Zo + (Dgo)//ﬁ:). Hence (see Fujikoshi, 1981)

e’
2,2 1 2 3 -3 -1
o, (t) =y _(t, /A7) [1 +—==— ] b A ~(1-2it) 7] + 0(n ") (4.4)
1 f n j-OJ o
(o]

where, wf(t,A) is the characteristic function of noncentral x2 variable with f df,

and noncentrality parameter A, and

....................................................................

........
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£=3a+2)(@-1)

52 - -i—'[trﬂz - q-l(trﬂ)zl ’

Q= diag(ep-q_'_l,ooo ’ep)

3 2

b, = %lztrn - 3¢ ery exe? +q 72 (e ),

by = %[-trQB +2q  (erm) exe? - g (e ),

b, = %[cm:" - 3q'1(trn) eral + 2q—2(tr9) 3] .

......
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5. ASYMPTOTIC DISTRIBUTIONS OF A GENERAL
CLASS OF TEST STATISTICS

In this section, we derive asymptotic distributions of the function f(ll,...,zp)
vwhich is analytic around (Al,...,lp) for two cases., In the first case, we assume
that the first partial derivatives of f(zl,...,zp) are not all zero. In the second

case, we assume that all of the above partial derivatives are zero. The modified

LRT statistic, under the null hypothesis, belongs to the second case whereas it
belongs to the first case under the alternative hypothesis,

Let Ai - 61 for i=1,2,...,(xr=1) and )‘r- cee ™ Xp =)= er. Also, let Jg = {1}
for i=1,2,...,(r-1) and Jr denote the set {r,r+l,...,p}. We make the following

assumptions:
of
(1) azj 'z-x fel forjeJa (5.1)
azf
—————— =f
(i1) Bljalk go) faB for jeJa, keJB

where L' = (21....,£p) and \' = ()‘1""’)\1:-1’}‘""”)‘)' Expanding the function
f(zl,...,lp) around \' = (Al,...,lr_l,k,...,l) and using perturbation expansion

of 9‘1""'21:’ we arrive at the following:

L= /6: [f(ﬂ.l,.-.,lp) -f(Al,oo.’Ap)]

r 1 r rr
= JfeeV +=—— [ ] ferB + ) ) £8 teV V
a=l & Q@ /= 230 oo aBaaB af Ba
o
1 LI
+ 2 g z fastrvaatrvsel

-1
+0(n° ) (5.2)




O UCAr A

16

vhere V = (V_.), B = (B,g) and V, and B ; are of order q,%q; where q =e..=q,_,=1.

Let r = p-q+l. Then,

1 -1

L-To +E (’1‘1+T2) +0(.n° )
[+]

where

Poq g

T = Z fv +f L Vies
o] a as  p~q+l pq+l i1

P=q P—q 2 P=q -1 2
.= ) } £ v +Zf(.k-).)(§v)
1 g © aB a8 q=1 & O p—q+1 al

P=q 4 P
+ Zfr(}-lex.‘l( y vgi)
p=1 T peqtl

1 Piq pqu 1 PEQ ] : E
+ = ) v v, +— v v,,) (5.3)
2 el g=1 af oa BB 2 ge] OF 0O p-g+l ii

and

T, = Y £b +f §b.
2 gm] @ OC p~q+1 p-q+1 ii

The characteristic function of L, ¢(t), can be written as

-1
6,(£) + ¢,(t) + 0(n_ "),

where ¢l(t), ¢2(t) have the same expressions as in Section 3, with To’ Tl’ T
by (5.3).

2 given

" Now, let

%'

v - (vll’...’vpp; Vlzgco',vlp, V23,-..,V2p,...,vp_1’p).
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' *
Then as n+%, v is distributed as multivariate normal with mean vector 0 and co-

variance matrix A where A is given in Section 3. Also, let

3; = (flotoo.f - ’fr’ft’...’fr’o’...’()).

P=q
—
q
%1 * .
Then, T "fof . We can write Tl as Tl = Y AOY . Ao being dependent on fa S,
faB s, Au s, p and q. Then we have
-t2/2°a'Aa
. ¢1(c)-e ° [1+—-—tr(A A)+—‘s—-—-{aoAAA
—
n
o
+ 27 3.3
+3 E "‘ qA f SN O(n L. (5.4)
To evaluate ¢2(,t), we take conditional expectation of T2 with respect to Mi's
and get
E ('1‘ )-(r -r) Z X f +f J\[(r rz)p2+(ro-r1)q]
a=1 @
K, (say)
assuming that q_>_p2 without loss of generality. Hence,
ita'v ]
9, (t) = At K, Ele  °
/n_
o
2 .
~t“/2+a'la
= —i_t_ K2 e ° o . (5.5)
/n_
o
Finally,
2.2 3
- it i -
sty =et T /2 4 Aby L UB 1y 0w (5.6)
1 3 o
n n
o o
where

Satad AN

B RRSGN
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- P-q
R 2 ' - 2.2 2.2
o 1" =alta =2 ; EALraE )
N 8, = K2+tr(A°A) R
: P=q
4 3.3 3.3
= g 2 + 5.7
g5 = al0A Aa +3( i £ E ) (5.7)
Inverting the right hand side of (5.6), we get the following
Theorem 5.1. Let
*
L = v’!:{f(ll,.ooplp)"f()\l,.-.,kp)}/'l' (5'8)
L ] -...'A = [ ]
where 7 >0 and Al> )\2 > eee> lp-q>lp-q+l P A Then
% -
PILY < x])=0(x) ~—— [('gll'r)d?(l) (x) + (33/13)o(3) (x)]+0(™1) (5.9)
= — o

AR A

n

o
where ¢(j)(x) is the jth derivative of the standard normal distribution function
o(x) and T, g8, and g, are given by (5.7).

When q= 1 in the expression (5.8), we obtain the asymptotic distribution of

*
L when A_>...>A .
1 P
When fl,...,fr in (5,2) are simultaneously equal to zero; we cannot obtain

the asymptotic distribution of f(zl.....zp) from (5.8). For example, let
f(ll,...,lp) =T
where T was defined by (3.1). Then

of
o P 0 (5.10)

for §=1,2,.,..,p when Ap-q+1-"'-Ap' So, the asymptotic distribution of the LRT- .

like test statistic cannot be obtained from Theorem 5,1.
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K%k {
L = n, f(zl,...,zp)- f(zl,...,zp)}

where A1>X2>. p-q>)\p-q+1-"">‘p = )\ and we assume that f(zl,...,ﬂ.p) satisfies
= = = \
the conditions (5.1). Also, we assume that fl fp-q+1 0 and faB are not

all equal to zero simultaneously. Then

1
=3 z lef trV tr VBB
= V'FV (5.11)

= = +...+ and
where V' = (vu,...,v (p-1) (r-l)’tr Vrr)’ r=p—q+l, and tr Vrr Vo, vpp’
1
F = E(faﬁ)' But, we know that vll""'vpp are distributed asymptotically as

independent normal variables with zero means and variances given by var(vi i) =
. *k
in for i=1,2,...,p~q and var(vﬂ)- 2)\2 for i= p-q+1,...,p. So, L is

asymptotically distributed as a linear combination of independent chi-square

variables with one degree of freedom.
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6. ASYMPTOTIC DISTRIBUTION OF AN ANALYTIC FUNCTION
WHEN THE UNDERLYING DISTRIBUTION IS
ELLIPTICALLY SYMMETRIC

Now we will give asymptotic distributions of the statistics L* and L**
defined in Section 5, when the underlying distribution is ellipti.cally symmetric.
Here we note that :_:: nx]l is said to be elliptically symmetric if its characteris-
tic function is of the form exp(if'lj)t#(f'ﬂf), where u: naxl, Q: nxn, and 2>0
and we write i: ~ ECn(E,Q;q;). Multivariate normal, multivariate t and some other
distributions -belong to the family of elliptically symmetric distributions.

For a discussion on the elliptically symmetric distributions, the reader is

referred to Kelker (1970).

In this section, we assume as before, that the rows of E are independently

distributed with the same dispersion I and also

*
ey~ Ecn(g’kjtn;“ . 6.1)

*
where A, = ) j=1,2,...,p.

3 h e
For simplicity of notatiom, let rl-rz- r and n, = B-r. Also let Ql '(q(l)l,
W@, 3 aD2g | 521,23

. We assume that each of Z %a Yoa
0.-1

a=1

Q, = (g4

n n .
and z z q(';)'z/no, j=1,2,3 are of 0(1) and we write for large n
a=1 B=1 *

2
T a2 % = &) g-1,2,3

(J) 1)
I1a, /n = K i=1,2,3
akB Y8 2
and

T aPqPa 6.2)

aa Jaa 3'

S
Then it can be shown that the limiting distribution of Z = /no (“—- - D)‘) is
)

the same as that of Z = (Eij), where |

.........................
........

............

-----------
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21

= 2
:: Zii N(O,Zkidb),
: Zyy ~ NOAAY), 16
:: where

1+32 (0")/0' @2 kD, ya12,..,

P
¢ =
1 +% (¢"(o)/¢'(.o)2- 1)1({2), f=p +1,...,p
and (
. (kD 4 200 Dy yoy
” v = ¢' (o)
(2) *(o (2)
[1(2 +-‘i"—L2K1 1, 1,j-p1+1,...,p
¢! (o)
[K§3) + 9% K{”]. 1=1,..05py5 I=pytl,e0eup
¢' (o)
3=1,...5py5 J= Pty el spe
Also
= = $" (o)
Cov(Z, ,Z, ) = A A, (5 - 1)C, 1i#j
117733 0 ¢.(°)2
where
1)
Ki7hs 4,9= 1(1)p,
C=
2
Ki ) s i,j-p1+1,...,p
-. Ky »  1=1()pg5 3=py*1,...,p.

All other elements of Z are uncorrelated.

\ e o NP L Ik 2k tnm e oS o
~ - " A RSt AP e - et el S Bk L e -
PRI R iy e A . L™ L r TR T

6.3)

6.4)
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We define f(ll,...,zp) the same way as in Section 5 and make the same

assumptions on it. I also has the same structure as in Section 5, i.e.

A =, ,.=\_ =),
p-q+l P .
Let
' - L]
Z (zll"'"zpp’zl2’°'"zlp’223""’22p""’Z(P-l)p)
Then for large n,
zZ ~ (0,Q), (6.5)

where Q = (wij)

' 6. 6. 6. 3 =, L..=mA FA,
wij s are given by (6.2), (6.3) and (6.4), with the restriction Ap-q+1 Ap A

We get the following result for the asymptotic distribution of f(ll,...,lp).
Theorem 6.1. Let

L e o (£, esR) = £Enye. A )T
[o] P P N

1’ 1

where 7> 0 and A,>...>)

= X =,,.=) =\, Then
1 P=q p-q+l P

PIL"c x] = 0(0) + 0a_/%) (6.6)

2 '
where ®(x) is defined before, and <t ?oQ?o’ where (fl"°"fp-q’fp—q+l""’fp-q+1’

*
0,....,0). When q = 1, we get from (6,6) the asymptotic distribution of L

when k1>A2>...>Ap.

1f fu= 0¥ «a and fa 's are not all zero simultaneously, we can write

B
*k /

-1/2
= - ' 0
L no{f(zl,...,lp) f(ll,...,kp)} as ? P? + (no ), where T is a function

*%
of fa 's, p and q. Then the characteristic function of L is

8




|-1/2 -1/2

|1 -~ 2itre +0(n ),

Hok
which implies that for large n, L is distributed as a linear combination of
x2 variables with 1 d.f. We can get the asymptotic null and nonnull distribu-

tions of the LRT-like test as speclal case of the above results.

RN AT,
.Ln\."; v '.):',.\‘"A-{.'nl-;-' L L'h:h'r_‘ ) L




7. ASYMPTOTIC DISTRIBUTIONS OF THE LRT~LIKE TEST
WITH ELLIPTICALLY SYMMETRIC ERRORS

In this section, we derive the asymptotic distributions of the LRT-like

test under the following assumption on the errors:

~EC (0, I * 7
e npt® Iy QI 34) .1

*
where e = Vec E' and I 1is proportional to £, Then we can write (e.g., see Anderson

and Fang (1982)) ‘

E = RUA,

*
where A'A =T , A; pxp, U: nxp, Vec U = u(np)’ distribution function of R is

~
related to ¢ and R is independent of U. Here "X d Y" means that the distribution

of X is the same as that of Y. Let us write A = (A1 A2) where Ai is of order

. d d .
nxpy, i= 1,2, and p= pl+p2; then we have E, = RUAl, Ez = RUAZ. Since

1
) t
EjQ Fy E1Q, %8,
S =
] 1
E2RYE B
we get
(234 1338 )
. AYU'Q UA, ALU'Q,Q,UA,
s 9 r .

138 L7
AJU'Q,QUA,  AJU'Q,UA,

Using this it can be shown that A is independent of Rz. Hence the distribution
of A will be the same as in the normal case, Thus the asymptotic null and non-
null distributions of A under assumption (7.1) are the same as in Sections 3 and

4 respectively.
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8. APPLICATIONS

'J’ The motivation behind the study in this péper is to derive some asymptotic
results useful in the area of principal component analysis under the CMRE model.
The object of the principal component analysis is to select a small number of im-
portant linear combinations of the variables which will best describe the varia-~
tion among experimental units.” The variance of i-th most important principal
component is given by Ai. If xi is very small, then the corresponding principal
component is not important. So, it is of importance to test whether the magnitude
of Ai or the relative magnitude of xi with respect to A1+...+Ap is significant.

In many of the practical situations, the last principal component is not signifi-

cant. In these situations we may test the hypotnesis X -...-Ap and if this

p-q+l
hypothesis is accepted, we conclude that the last q principal components are not
important. One possible test for H, under the CMRE model is the modified
LRT test statistic described in Section 3. Other possible test statistics

are ratios of the roots like, for example, zp_q+1(zp_q+1+...+zp),2

p-q+1/2p’

etc.

The results of this paper are useful in implementation of the above proce-
dures.

The results in this paper are also useful in studying certain structures of
the covariance matrix. For example, the problem of testing the hypothesis that
Z has the intraclass correlation structure can be handled by testing the hypothe-
sis that Az-...-Ap. If I has particular structure, we may take advantage of the

structure to improve the efficiency of the estimates and power of the tests,
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